Mark scheme – Thermal Physics

Qu	Questio n		Answer/Indicative content	Mark s	Guidance
				3	Examiner's Comments
1			С	1	As a substance melts, the PE of the molecules increases, ruling out answers B and D. The temperature of a melting substance does not change and so the KE of the molecules cannot change, as the temperature and mean KE of molecules are directly proportional. This means that C must be correct. A cannot be correct since the internal energy is the sum of the KE and PE of the molecules. The KE is constant and the PE increases, meaning the internal energy must also increase.
			Total	1	
2			А	1	
			Total	1	
3			The energy required per unit mass to change the temperature by 1 K / 1°C.	B1	Allow : $c = E/m \Delta \theta$, where E = energy, m = mass and $\Delta \theta$ = change in temperature.
			Total	1	
4			The sum of (the random distribution of) the KE and PE of (its) molecules	B1	Not if no clear indication of particulate nature, i.e. allow particles or atoms for molecules Examiner's Comments The correct answer for this item was a direct reference to specification point 5.1.2 (d) and required the association with the particles of a system. Many more than half of the candidates would have scored this mark had they included this association.
			Total	1	
5	а		pV/T = constant	B1	
			(1.0 × 10 ⁵ V)/290 = (1.0 × 10 ³ × 1.0 × 10 ⁶)/230	B1	
			V = 1.26 × 10 ⁴ (m ³)	B1	
	b	i	n = pV/RT = 1.0 × 10 ⁵ × 1.26 × 10 ⁴ /(8.31 × 290)	B1	ecf
		i	n = 5.2 × 10 ⁵	B1	allow 5.4 × 10^5 using 1.3 × 10^4
		ii	4.0 × 10 ⁻³ × 5.2 × 10 ⁵ = 2.1 × 10 ³ (kg)	B1	ecf (i)
	с		(internal energy ∝ T) E = 1900 × 230/290 = 1500 (MJ)	B1	
	d		U = ρVg = 1.3 × 1.26 × 10 ⁴ × 9.81 = 1.61 × 10 ⁵	C1	or 1.3 × 1.3 × 10 ⁴ × 9.81 =

	Ma = U - Mg	C1	1.66 × 10 ⁵
	27 M = $1.6 \times 10^5 - Mg$ giving M = 4.3×10^3 kg	A1	$M = 4.6 \times 10^3 \text{ kg}$
	Total	10	
6	The sum of the (random) kinetic <u>and</u> potential energy of atoms or molecules in a substance	B1	Allow 'particles' <u>Examiner's Comments</u> This is a simple definition that many candidates recalled well. Lower level responses missed out that this is to do with the kinetic energy and potential energy of particles .
	Total	1	
7	D	1	
	Total	1	
8	D	1	<u>Examiner's Comments</u> The unit J mol ⁻¹ K ⁻¹ is the same unit as the molar gas constant, such that $pV = nRT$. It follows that the unit of R must be the same as the unit of pV/T as 'n' has no units.
	Total	1	
9	В	1	
	Total	1	
1 0	В	1	
	Total	1	
1 1	с	1	
	Total	1	
1 2	A	1	
	Total	1	
1 3	A	1	
	Total	1	
1 4	В	1	
	Total	1	
1 5	С	1	Examiner's Comments

				In this question, candidates should consider the equation pV = nRT. If the pressure and volume remain the same, this gives nT as a constant also. If the number of particles decreases to two thirds of the original number, then the temperature in kelvin, and thus the total kinetic energy and hence mean square speed must have increased by a factor of 1.5, giving option C. This question provided opportunities for middle-grade candidates.
		Total	1	
1 6		D	1	
		Total	1	
1 7		В	1	
		Total	1	
1 8		с	1	
		Total	1	
1 9		$E = mc\Delta\theta$ (any subject) <u>and</u> gradient is larger for CD The specific heat capacity of the liquid is less than that of the solid.	M1 A1	ORA Allow: $\Delta \theta$ is larger for liquid in the same time interval or same energy supplied for "gradient" Allow $c \propto$ gradient ⁻¹ Not: $c = 1 / \text{gradient}$ Examiner's Comments Many candidates realised that the gradients of the lines AB and CD were related to the specific heat capacities of the solid and liquid states. Higher level responses included the formula relating energy change, mass, specific heat capacity and the temperature change, and how that formula related to the gradient of the line on a temperature-time graph. Once that link was established, the lower gradient indicates a larger specific heat capacity.
		Total	2	
2 0		when pressure or volume of an ideal gas tends to zero, the temperature must tend to zero;	B1	
		the temperature scale with this zero of temperature is the kelvin scale / AW	B1	
		Total	2	
2 1		number of moles = $0.327 / 0.018 = 18.17$ number of molecules = $18.17 \times N_A$	C1	

		number of molecules = 1.1×10^{25}	A1	
		Total	2	
2 2		Smoke particles show random / haphazard motion (wtte)	B1	Accept a correctly labelled diagram for this B1 mark.
		This is because of collisions with air molecules / particles.	B1	
		Total	2	
2 3		n (= pV/RT) = 2.4 x 10 ⁵ x 1.2 x 10 ⁻³ /8.31 x <u>290</u> n = 0.12 (mol)	C1 A1	Allow any correct rearrangement of the equation Allow use of $pV = NkT$ and $n = Nk/R$ or $n = N/NA$ ($n = 0.1195$)
		Total	2	
2 4		 Any three from: Forces between particles are negligible except during collisions Collisions are perfectly elastic Time of a collision is negligible compared to time between collision Particles / atoms / molecules occupy negligible volume compared to volume of gas Large number of molecules in random motion. 	B1 × 3	
		Total	3	
2 5	а	energy input = <i>mc</i> ∆θ = 0.327 × 4200 × 80 = 110 kJ	C1 M1	Allow 0.3 kg in the calculation
		energy input = power × time	C1	
		time = 220 (s)	A0	
	b	Thermal losses to kettle and surroundings	B1	
		Lagging the kettle	B1	
		Cover to prevent evaporation	B1	
		Total	6	

26	а		$pV = \text{constant} (\text{or } p_1V_1 = p_2V_2)$ $p_{final} = 2.4 \times 10^5 \times 1.2/1.5$ $= 1.9(2) \times 10^5 (Pa)$	C1 C1 A1	Alternative method: $p = nRT/V$ (p must be the subject)Allow use of $p = NkT/V$ (with $N = 7.2 \times 10^{22}$ and $k = 1.38 \times 10^{-23}$)Substitute $p = 0.12 \times 8.31 \times 290 / 1.5 \times 10^{-3}$ ECF from 1a for incorrect n and/or T $p = 1.9(3) \times 10^5$ (Pa)Examiner's CommentsQuestions 1(a) and 1(b) took the ideal gas equation and applied it to an unfamiliar situation, that of a toy rocket. Most candidates answered these questions well, remembering to convert the temperature from 17°C to 290K.
	b	i	$\Delta p = (2.4 - 1.0) - 10^5 = 1.4 x$ 10^5 (Pa) upwards force (= ΔpA) = (2.4 - 1.0) x 10 ⁵ x 1.1 x 10 ⁻⁴ = 15 (N)	C1 C1 A0	Alternative method:Downwards force (from trapped air) = $pA = 2.4 \times 10^5 \times 1.1 \times 10^{-4} = 26.4$ (N) and upwards force (from atmosphere) = $pA = 1.0 \times 10^5 \times 1.1 \times 10^{-4} = 11.0$ (N)So total upwards force = $26.4 - 11.0$ = 15.4 (N)Ignore any attempt to calculate weight Special case: Allow 1/2 for the use of $\Delta p = 2.4 \times 10^5$ (Pa) giving upwards force = 26.4 (N)Examiner's CommentsMost candidates realised that a difference in air pressure between the inside and outside of the bottle would force the water downwards, producing an upwards force on the bottle which could be calculated using $p = F/A$.
		11	m = 0.3 + 0.05 (= 0.35) (kg) (Resultant force = upwards force – $W = ma$) 15.4 – (0.35 x 9.81) = 0.35a or $a = 12/0.35$ $a = 34 (m s^{-2})$	C1 C1 A1	0.050 + (10 ³ x 0.3 x 10 ⁻³) Alternative approach: <i>a</i> = (15.4/ <i>m</i>) - g ECF for incorrect value of <i>m</i> No ECF ci (since we are told that upwards force = 15(.4)(N)) Upwards force = 15 (N) gives <i>a</i> = 33 (m s ⁻²) Examiner's Comments This question, although a simple F = ma problem, challenged many candidates. Exemplar 1 ¹⁰ Here calculate the titlet worked acceleration of the redet. $p = \frac{\mu}{p_{c}} = \frac{150^{3} \times 0.3 \times 10^{-3}}{0.3} = \frac{144}{105^{4}} = \frac{144}$

			Total	8	
2 7	а	i	$E = m \times c \times \Delta \theta = 0.15 \times 4200 \times 55$ $E = 3.5 \times 10^4 \text{ (J)}$	A1	Note answer to 3 s.f. is 3.47×10^4 (J)
		ii	(Energy transferred from water = energy transferred to glycerol) $0.150 \times 4200 \times (75 - \theta)$ or $0.020 \times 2400 \times (\theta - 20)$	C1	
		ii	0.150 × 4200 × (75 – θ) = 0.020 × 2400 × (θ – 20)	C1	
		ii	θ = 71(°C)	A1	
		ii i	The temperature is less / different because of thermal energy of the water is also used to warm up the boiling tube. (AW)	B1	
	b		Graph showing constant temperatures during phase changes.	B1	
			Temperature increases linearly for the solid and the liquid.	M1	
			Steeper slope for the solid state.	A1	
			Total	8	
28	a		There is no contact force between the astronaut and the (floor of the) space station (so no method of measuring / experiencing weight)	B1	Allow astronaut and the space station have same acceleration (towards Earth) / floor is falling (beneath astronaut) Examiner's Comments Misconception Experiencing weightlessness is not the same as being in freefall There was a lack of understanding of the nature of feeling weightless. The sensation of 'weightlessness' is a lack of the physiological sensation of 'weight'. The skeletal and muscular systems are no longer in a state of stress. This sensation is caused by a lack of contact forces as a result of the ISS and the astronaut experiencing the same acceleration. Common incorrect responses included: the astronaut is weightless because he is falling there is no resultant force on the astronaut

				• the ISS orbits in a vacuum where there is no gravity.
Ъ	i	$M = 5.97 \times 10^{24} (kg)$ or ISS orbital radius $R = 6.78 \times 10^{6} (m)$ or $g \propto 1/r^{2}$ $(gr^{2} = \text{constant so}) g \times (6.78 \times 10^{6})^{2} = 9.81 \times (6.37 \times 10^{6})^{2}$ $g = 8.66 (N \text{ kg}^{-1})$	C1 C1 A1	or $g (= GM/R^2) = 6.67 \times 10^{-11} \times 5.97 \times 10^{24} / (6.78 \times 10^6)^2$ Allow rounding of final answer to 2 SF i.e. 8.7 (N kg ⁻¹) <u>Examiner's Comments</u> The simplest method here was to use the fact that g is inversely proportional to r^2 , so $gr^2 = \text{constant}$. If this was not used, a value for the mass of the Sun had to be calculated, which introduced a further step. Candidates who omitted this calculation and used a memorised value of the Sun's mass instead were unable to gain full marks, because they invariably knew it to 1 s.f. only, whereas 3 were required. Errors occurred when candidates used the incorrect distance in the formula for g . Common errors included: • forgetting to square the radius • using the Earth's radius rather than the orbital radius of the satellite calculating (6.37 × 10 ⁶ + 4.1 × 10 ⁵) incorrectly.
	ii	$2\pi r/T = v$ or $T = 2 \times 3.14 \times 6.78 \times 10^{6} / 7.7 \times 10^{3}$ $T = 5.5 \times 10^{3}$ s (= 92 min)	M1 A1	ECF incorrect value of <i>R</i> from b(i)
с		$\frac{\frac{1}{2}Mc^{2}}{\frac{1}{2}N_{A}mc^{2}} = \frac{3}{2}RT$ $= \frac{1}{2}c^{2} = 3 \times 8.31 \times 293 / 2.9 \times 10^{-2} = 2.52 \times 10^{5}$ $\sqrt{c^{2}} = 500 \text{ (m s}^{-1)}$ $(= 7.7 \times 10^{3} / 15)$	C1 C1 A1 A0	or $\sqrt[3]{2}mc^2 = \frac{3}{2}kT$ or $c^2 = 3kT/m$ or $c^2 = 3 \times 1.38 \times 10^{-23} \times 6.02 \times 10^{23} \times 293/2.9 \times 10^{-2} = 2.52 \times 10^5$ not $(7.7 \times 10^3 / 15) = 510$ (m s ⁻¹) Examiner's Comments The success in this question depended on understanding the meaning of the term <i>m</i> in the formula $\frac{1}{2}mc^2 = \frac{3}{2}kT$ given in the Data, Formulae and Relationship booklet. A significant number of candidates took <i>m</i> to be the mass of one mole (the molar mass, <i>M</i>) whereas <i>m</i> is actually the mass of one molecule. Candidates who used the formula $\frac{1}{2}Mc^2 = \frac{3}{2}RT$ were usually more successful because the molar mass had been given in the question stem.
d		power reaching cells (= IA) = 1.4 × 10 ³ × 2500 = 3.5 × 10 ⁶ W power absorbed = 0.07 × 3.5 × 10 ⁶ = 2.45 × 10 ⁵ W cells in Sun for (92 – 35 =) 57 minutes	C1 C1 C1 A1	mark given for multiplication by 0.07 at any stage of calculation (90 – 35 =) 55 minutes using T = 90 minutes ECF value of T from b(ii) 55/90 × 2.45 × 10 ⁵ = 1.5 × 10 ⁵ (W) using T = 90 minutes

		average power = 57/92 × 2.45 × 10 ⁵ = 1.5 × 10 ⁵ (W)		Examiner's Comments Although this question looked daunting, it was actually quite linear and many candidates who attempted it were able to gain two or three marks even if they did not eventually get to the correct response. Candidates who set out their reasoning and working clearly were more liable to gain these compensatory marks.
		Total	13	
2 9		P = (m/t)cθ = 0.070 × 4200 × (30 - 14)	C1	
		= 4700	A1	or 4.7
		unit = W or J s ⁻¹	B1	allow kW if consistent with the value for P.
		Total	3	
3 0		Energy used to heat water to 100 °C = $0.60 \times 4200 \times 80$ (= 201.6 kJ) Energy remaining to vaporise water = 528 (kJ) - 201.6 (kJ) (= 326.4 (kJ) mass vaporised = $326.4 \times 10^3 / 2.3 \times 10^6$ = 0.1419 (kg) mass of water left = $0.60 - 0.1419$ mass of water left = 0.46 (kg)	C1 C1 A1	Possible ecf from (a) Examiner's Comments This was a challenging multi-step calculation that differentiated between the candidates well. A method employed by many high-scoring candidates began with a word equation "Total energy transferred = energy required to heat water to boiling point + energy required to vaporize water". This made it clear to award the mark for substituting into the specific heat capacity equation and clear to the candidate how to find the mass of vaporized water. A minority of candidates forgot to subtract the mass of vaporized water from the initial mass.
		Total	4	
3 1	i	(pV = nRT) 100 × 10 ³ × (0.46) ³ = n × 8.31 × (273 + 20) n = 4.0	C1 A1	Note <i>T</i> = 20 is XP Not 1 SF answer of 4 Note answer is 4.00 to 3SF
	ii		C1	Note <i>T</i> = 1300 is XP

		$\frac{100}{293} = \frac{p}{1573} \text{ or } \begin{array}{l} p \times (0.46)^3 = \\ n \times 8.31 \times \\ 1573 \end{array}$ pressure = 540 (kPa)	A1	Allow use of correct, unrounded <i>n</i>
		Total	4	
3 2		No change in KE because temperature is constant (during melting) PE of (the molecules) increases (during melting) The internal energy increases	M1 A1 M1 A1	Allow 'KE is not changing' Not 'KE is not increasing' Note: This A1 mark can only be scored if both M1 marks have been awarded. Examiner's Comments This question was designed to lead the candidates into thinking about both KE and PE of the particles contained within the paraffin. The stem of the question includes a reference to constant temperature, so credit could only be awarded to linking this idea to that of the molecules' constant average KE, since average KE is directly proportional to absolute temperature. KE not changing was an acceptable alternative wording to constant average KE, but 'KE not increasing' was not. Candidates often picked up a mark for correctly stating that the PE of the molecules increased but would only gain the final mark for stating that the internal energy increased if they had already got the correct ideas for both PE and KE. Examiners commented that some candidates assumed conservation of energy and so if PE went up then KE went down or vice versa. Candidates wasted time and effort by describing what happened either before or after melting, which was not required.
		Total	4	
3 3		Section AB Any two from Particles close together Particle spacing increase with increasing time or increasing time or increasing temperature Particles in a fixed structure/(regular) lattice Particles vibrate/perform SHM	B1 x 2 B1 x 2	Not: 'vibrates more'

			 Particles vibrate with increasing amplitude (from A to B) Section CD Any two from Particles close together /(slightly) further apart (than in AB) No regular structure /AW Particles (are free to) move around / move past each other / flow Particles move with increasing speed from C to D / greater KE 		
			Total	4	
3 4	а		Use a thermometer (with ± 1 °C) Stir water bath / avoid parallax (for glass thermometer)	B1 B1	Allow 'temperature sensor / gauge' Allow 'avoid touching sides of water bath with thermometer' Allow 'take temperature in several places / times and average' Allow idea of 'leave thermometer for long time (to reach thermal equilibrium)' Not idea of 'use thermometer with finer resolution' Examiner's Comments A large majority included a correct measuring device, such as a thermometer. Significantly fewer described a technique for accurate measurements such as stirring the water or taking the temperature at several points and calculating a mean temperature.
	b	i	Smaller (spacing between) divisions / increments (AW)	B1	Ignore any reference to accuracy or precision Allow 'less uncertainty' Allow better or smaller or greater or higher resolution Examiner's Comments Approximately half of the candidature made a correct comment regarding resolution or that the smaller intervals on the psi scale made it a sensible choice of scale.
		ii	p = 37.0 × 4.448 / (1000 × 0.0254 ²) 255 (kPa) uncertainty = 3 (kPa)	B1 B1	Allow clearly identified correct answer in table or in working area. Must be 3sf Must be 1sf Allow 255.1 ± 3.4 scores mark 1 Examiner's Comments The vast majority of candidates correctly calculated the pressure in kPa and

			stated that the absolute uncertainty was 3 kPa. A very small number of responses were rounded inappropriately.
c i	i Point plotted at (44, 255)	B1	ECF from (b)(ii) Plot to with ± half a small square Ignore checking error bars Examiner's Comments Most candidates correctly plotted the point with error bars. In this instance during marking Examiners were instructed to ignore the error bars as they were too difficult to view when scanned.
	Level 3 (5–6 marks) Clear explanation, description and determinationThere is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated.Level 2 (3–4 marks) Some explanation, description and determination Or Some explanation and clear determinationThere is a line of reasoning presented with some structure. The information presented is in the most part relevant and supported by some evidence.Level 1 (1–2 marks) Limited explanation or description or determinationThe information is basic and 	B1 × 6	Indicative scientific points may include: Explanation and Description • Absolute zero is the minimum possible temperature / at absolute zero KE is zero • At absolute zero p is zero • At absolute zero, the internal energy is minimum (allow 0) • Absolute zero should be (about) -273 °C • Reference to pV = nRT or pV = NkT or p ~ T • A graph of p against θ is a straight line / straight line drawn on graph • Intercept of straight line with x-axis or θ-axis is absolute zero calculated by using y= mx + c Determination • Gradient in the range 0.7 to 0.9 (kPa K ⁻¹) • y = mx + c used to determine the intercept c or absolute zero • Absolute zero in the range -320 °C to -240 °C Use only L1, L2 and L3 in RM Assessor. Examiner's Comments It was clear that the majority of candidates had either performed this experiment themselves or had otherwise seen it before. The concept of absolute zero as the x-intercept of the straight line.
			Common errors included mis-calculating the gradient, inability to rearrange the

					equation or inappropriate conversion to kelvin. Re-plotting the graph was not required and merely wasted time for little reward.
	d	(throug (AW). Detern absolu differen value i	the worst fit line gh all the error bars) nine the new value for ite zero and find the nce between the in (c)(ii) and this new ept. (AW)	B1 B1	Examiner's Comments Many candidates realised that drawing a line of worst fit was sensible. Far fewer were clear that using the line of worst fit to find a new x-intercept, leading to a spread in values for absolute zero was the correct procedure. Many incorrectly suggested finding the difference in gradients, or percentage differences in gradients.
	e	absolu (c)(ii) (Whilst temper behind water (Graph Stir wa temper same /	g gas value of tte zero is lower than t cooling, the) rature of gas lags t the temperature of (AW, ORA) is shifted to the left ater / <u>wait</u> for ratures to be the / attempt at measuring rature of gas directly	B1 B1 B1	Allow: gradient is too shallow Allow: p measured is higher than expected for incorrect measurement of T (so affects the graph) (AW, ORA) Not insulation of water bath Not heat losses Examiner's Comments The first mark for this item was intended to be for a straightforward comparison that the repeated experiment yielded a lower value than that from part c(ii). Many candidates calculated a percentage difference yet did not refer to the direction of difference. Some candidates successfully suggested that the water would always be cooler than the gas and so the thermometer reading would be systematically lower than the true temperature of the gas. Rather fewer discussed that the pressure reading. Very few candidates linked this idea to the effect on the graph, namely that the points would all be shifted to the left, causing a lower x-intercept or a less steep line of best fit. There were three acceptable experimental approaches to avoid this systematic error. Stirring the water and waiting until the gas and water equilibrated would have reduced the effects of the rapid cooling. A sensible approach employed by some candidates was to take the temperature of the gas directly using a thermometer or temperature inside the flask.
		Total		18	
3 5		i i i i genera enviror	n reactors produce ctive by-products affect future ations and the nment in terms of le contamination /	B1	

		exposure to humans and animals.		
	ii	No of particles in 1000 g U = $1000/235 \times 6.02 \times 10^{23} =$ 2.56×10^{24} No of reactions for U = 2.56 $\times 10^{24}$	B1	Appreciate that the key to the answer is the difference in numbers of atoms / nuclei or equal number of nucleons involved scores one mark if nothing else achieved.
	ii	Energy from U = 2.56 × 10 ²⁴ × 200 = 5.12 × 10 ²⁶ MeV	B1	
	ii	No of particles in 1000g H = 6.02×10^{26} No of reactions = $6.02 \times 10^{26}/4$ Energy from H = $6.02 \times 10^{26}/4 \times 28 = 42.14 \times 10^{26}$ MeV	B1	
	ii	Hence energy 42/5 = 8.2 times higher	B1	
	ii	<i>second method</i> 235 g of U and 4 g of H / He contain 1 mole of atoms	or B1	
	ii	there are 4.26 moles of U and 250 moles of He	B1	
	ii	so at least 58 times as many energy releases in fusion ratio of energies is only 7 fold in favour of U	B1	
	ii	therefore 58/7 times as much energy released by 1 kg of H	B1	
	ii	<i>similar alternative argument,</i> e.g. For U each nucleon 'provides' 0.85 MeV	В1	
	ii	For H each nucleon 'provides' 7 MeV	B1	
	ii	(Approx) same number of nucleons per kg of U or H	B1	
	ii	so 8.2 times as much energy from H	B1	
		Total	5	
3 6		Level 3 (5–6 marks) Clear description and clear calculations of energy per kg	B1×6	Indicative scientific points may include: Description
		There is a well-developed line of reasoning which is		Energy is produced in both reactions

	clear and logically		More energy produced (per reaction) in fission
	structured. The information		The (total) binding energy of 'products' is greater
	presented is relevant and		In fusion, nuclei repel (each other)
	substantiated.		 Fusion requires high temperatures / high KE
			 Fission reactions are triggered by (slow-)neutrons
	Level 2 (3–4 marks)		Chain reaction possible in fission
	Clear description OR		
	Clear calculations of energy		Calculations
	per kg		
	OR		 1 kg of uranium has 4.26 mols / 2.56 × 10²⁴ nuclei
	Some description and some		 1 kg of deuterium has 500 mol / 3.01 × 10²⁶ nuclei / 1.50 × 10²⁶
	calculations		'reactions'
			• 200 MeV = 3.2 × 10 ⁻¹¹ J
	There is a line of reasoning		• 4 MeV = 6.4×10^{-13} J
	presented with some		 Uranium: ~ 10¹⁴ (J kg⁻¹) (actual value 8.2 × 10¹³)
	structure. The information		 Deuterium: ~ 10¹⁴ (J kg⁻¹) (actual value 9.6 × 10¹³)
	presented is in the most-part		The energy per kg is roughly the same
	relevant and supported by		
	some evidence.		Examiner's Comments
	Level 1 (1–2 marks)		This is the second LoR question. This is designed to assess knowledge of the
	Limited description		two nuclear energy reactions and to calculate energy release using some given
	OR		data. The differences between the fission and fusion reactions were generally
	Limited calculations		well answered although many candidates explained differences in design,
			operation and waste more than the reactions. The similarities were often not as
	There is an attempt at a		clear however several candidates gave excellent responses in terms of binding
	logical structure with a line of		energies and mass differences. Candidates were also expected to complete a
	reasoning. The information is		calculation to show which produces more energy output per kilogram. This is
	in the most part relevant.		challenging calculation to follow through fully, but most candidates were able to
			make some attempt, even if it was only converting MeV to J. Only better
	0 marks		candidates realised 2 nuclei of deuterium were used for one fusion reaction.
	No response or no response		While a small number of candidates did correctly calculate the energy per
	worthy of credit		kilogram, they tended to state that fusion produced more energy rather than a
			feeling that they are basically equivalent. As usual with LoR questions, a
			holistic approach is taken to the marking and candidates can access higher
			levels without necessarily reaching all the marking points. Even so, relatively
			few candidates were able to access Level 3, generally due to poor calculations
			and/or descriptions.
	Total	6	
	Level 3 (5 - 6 marks)		Indicative scientific points may include:
	Clear explanation using		
	kinetic theory ideas and		Explanation using kinetic theory
	either a clear proof using		
	formulae or a correct		pressure = force/area
	calculation		force is caused by air molecules colliding with oven walls
3	These is a still to the t	B1 x	• Newton's 2 nd Law states force = rate of momentum change
7	There is a well-developed	6	increased temperature means each molecule has greater KE
	line of reasoning which is		hence greater velocity and hence greater momentum
	clear and logically		and more collisions with walls per second
	structured. The information		 hence greater rate of momentum change on hitting walls.
	presented is relevant and		This would lead to greater pressure if <i>N</i> remained constant
	substantiated.		 so number of molecules in oven must decrease (air escapes)
	Level 2 (3 – 4 marks)		 so fewer but 'harder' collisions at higher temperatures giving constant prossure
	100012(5-411101KS)		pressure.

		A partial explanation using kinetic theory ideas and either a partial proof using formulae or a partial calculation There is a line of reasoning presented with some structure. The information presented is in the most part relevant and supported by some evidence. Level 1 (1 – 2 marks) An attempt at either explanation or proof or calculation There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.		 Rms velocity c increases with temperature but number <i>N</i> decreases and so effects balance out to keep total KE (½<i>Nmc</i>²) constant Proof using formulae equate <i>pV</i> = <i>N</i>k<i>T</i> and <i>E</i> = ³/₂<i>N</i>k<i>T</i> to show <i>E</i> = ³/₂<i>pV</i> in an ideal gas, all internal energy <i>E</i> is kinetic energy so <i>E</i> is independent of temperature Calculation Internal energy = ³/₂<i>pV</i> = 1.5 x 0.065 x 1.0 x 10⁵ = 9.8 kJ At <i>T</i> = 293K, <i>N</i> = <i>pV/kT</i> = 1.6 x 10²⁴ and <i>n</i> = 2.7 moles At <i>T</i> = 473K, <i>N</i> = 1.0 x 10²⁴ and <i>n</i> = 1.7 moles so we can show that <i>NT</i> (and/or <i>nT</i>) remain constant
		Total	6	
3 8	i	Molecules in X vibrate about fixed positions /AW Molecules in Z are free to move/random/AW	B1 B1	Allow references to ice for X and water / liquid for Z Allow <u>one</u> correct for B1 from: Molecules in X have lower <u>K</u> E/speed/velocity Speed/velocity of molecules increases with temp/time Amplitude or frequency increases with temp/time in X
	ïi	Regio nPhysical quantity , or quantiti es, that increase as time increase sPhysical quantity es, that remain constant as time increase sXKPYPKZKP	B1×3	Note that each B1 mark is for a correct row Allow KP/- for both X and Z
	ii i	Absolute zero / 0 <u>K</u> / - 273 <u>°C</u>	B1	
		Total	6	

		Use level of response annotations in RM Assessor,
		e.g. L2 for 4 marks, L2 [^] for 3 marks, etc. Indicative scientific points may include:
		statement 1
Cle sta The line cle stru pre and Lev Cle sta or Lin 3 The 9 pre stru pre stru pre cle sta or Lin 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	vel 3 (5 – 6 marks) ear expansion of three atementsatementsvere is a well-developed e of reasoning which is ear and logically ructured. The information esented is clear, relevant d substantiated.vel 2 (3 – 4 marks) ear expansion of two atementsmited attempt at all three rece is a line of reasoning esented with some ructure. The information esented by me evidence.vel 1 (1 – 2 marks) mited attempt at one or two atements	 fusion reactions are occurring which change H into He and mass is lost which releases energy energy released = c²Δm Δm per second = luminosity / c² statement 2 average k.e. of each proton is ³/₂kT high <i>T</i> means protons are travelling at high speed so fast enough to overcome repulsive forces and get close enough to fuse p.e. = e²/4πε₀r so <i>T</i> must be high enough for ³/₂kT> e²/4πε₀r <i>r</i> is approximately 3fm statement 3 k.e. ~ <i>T</i> so average energy at 10⁷ K is only one thousandth of the average energy at 10¹⁰ K when protons might fuse but M-B distribution applies so at the high energy end there will be a few p with enough energy quantum tunnelling across potential barrier is possible small probability of many favourable collisions to boost energy of p 4 p must fuse to produce He; it is complicated process making probability of fusion much less number of p in Sun is so huge that, even with such a small probability, 4 x 10⁹ kg of p still interact s⁻¹ a larger probability means lifetime of the Sun would be shorter
log rea in t 0 n No	pere is an attempt at a gical structure with a line of asoning. The information is the most part relevant. marks o response or no response orthy of credit.	Examiner's Comments This was one of the two LoR questions. It required understanding of fusion, mass-energy equivalence, the Maxwell-Boltzmann distribution, and the relationship between mean kinetic energy and temperature for particles in an ideal gas. Responses to the following questions were being sought:
		 Why is the Sun losing mass? Why is an extremely high temperature needed for fusion in stars? Why does fusion occur in the Sun even though its temperature is 1,000 times less than that required by theory?
		Two dissimilar responses could score comparable marks if the criteria set out in the answer section of the marking scheme were met. Level 3 responses gave a clear answer to all three of the questions, whereas Level 2 responses generally

					had clear answers to only two. In Level 1, limited answers to only one or two of the above questions were given.
			Total	6	
4 0	а		Ensure largest possible proportion of flask is immersed.	B1 × 4	
			Make volume of tubing small compared to volume of flask.		
			Remove heat source and stir water to ensure water at uniform temperature throughout.		
			Allow time for heat energy to conduct through glass to air before reading temperature.		
	b	i	Pressure is caused by collisions of particles with sides.	B1	
		i	Velocity of particles (and volume of gas) are not zero at 0 °C.	B1	
		ii	1: Gradient of graph 0.75 × 10 ² / 100 = 0.75		
		ii	Number of moles of gas = gradient / R = 0.75 / 8.31 = 0.09	C1	Alternative method Internal energy = 3/2 × p × V
		ii		A1	
		ii	Mass of gas = $0.09 \times 6.02 \times 10^{23} \times 4.7 \times 10^{-27} = 2.5 \times 10^{-4}$ (kg)		At θ = 100°C pV = 2.73 × 10 ²
		ii	2: Internal energy = 3/2 × NkT		Internal energy = 1.5 × 2.73 × 10 ² = 410 (J)
		ii	= $1.5 \times 0.09 \times 6.02 \times 10^{23} \times 1.38 \times 10^{-23} \times (100 + 273)$	C1	
		ii	= 410 (J)	A1	
			Total	10	
			½ <i>m</i> c _{RMS} ²= 3/2 <i>kT</i>		Allow this mark even when $T = 250$ is used subsequently
4 1		i	c _{RMS} ² = 3 x 1.38 x 10 ⁻²³ x 523 / 4.8 x 10 ⁻²⁶ (Any subject)	C1 C1 A1	Not 250° C Allow $c^2 = 4.5 \times 10^5$
			root mean square speed = 670 (m s ⁻¹)		Allow 2 marks for 4.5 x 10 ⁵ ; mean square speed calculated Allow 1 mark for 464; no conversion to kelvin

				Examiner's Comments The key to this question is equating 2 formulae. The first is the familiar $\frac{1}{2}$ m v ² for kinetic energy. In this case, the squared speed will be the mean squared speed of the particles. The second is the connection between average kinetic energy of a particle at absolute temperature, <i>T</i> , <i>E</i> _k = $3/2$ k <i>T</i> . If candidates did that, then they not only scored the first mark but also could go on to complete the question. A common error was to forget to find the square root, as the question asks for the root mean square speed.
	ii	(number of molecules =) 1.3 x 6.02×10^{23} or 7.83×10^{23} mean KE = $\frac{3}{2} \times 1.38 \times 10^{-23}$ x 523 or 1.08×10^{-20} total kinetic energy = 8.5×10^{3} (J)	C1 C1 A1	Not 250°C Allow 8.4×10^3 for use of 670 m s ⁻¹ Allow full credit for use of total KE = $1.5nRT$ Allow full credit for use of E_k for one molecule = $\frac{1}{2}$ m c_{RMS}^2 (which may include ECF for their c_{RMS} in (d)(i)) Allow 2 marks for $4.0(5) \times 10^3$ (J) ; no conversion to kelvin. Examiner's Comments There were 2 ways to answer this question. The first was to find the kinetic of one particle using the mean square speed and the second was to find the kinetic energy of one particle using the absolute temperature. Lower level responses stopped at that point, or there was misunderstanding how to scale that value up to the whole gas. For either route, the value for one particle needed to be multiplied by the number of particles in the gas. This can be found by multiplying the number of moles by the Avagadro constant given in the data, formulae and relationship booklet.
		Total	6	
4 2	i	$KE = and GPE = \frac{1}{2}gmv^2 and GMm/r$ $\frac{1}{2}mv^2 = GMm/r \text{ then a valid step to}$ $v = \sqrt{(2GM/r)}$	C1 A1	Allow <i>m</i> = 1 (kg) if clearly defined Examiner's Comments Examiners were delighted that candidates proved the relationship for escape velocity very clearly indeed with the higher ability candidates correctly suggesting that 'KE + GPE = 0' was the condition for escape, although 'KE lost = GPE gained' would have been a clear way of reconciling any minus sign confusion. A minority of candidates tried, unsuccessfully, to invoke the expression for circular motion inappropriately.

			$(v^2 = 2 \times 6.67 \times 10^{-11} \times 0.131 \times 10^{23} / 1.19 \times 10^6)$		Answer to 3.s.f. is 1210
		ii	v = 1200 (m s ⁻¹)	A1	Examiner's Comments Approximately four-fifths of all candidates calculated the escape velocity on Pluto correctly.
					Those that did not score the mark for this item did so because of improper calculator use or, more rarely, because they selected the wrong data from the question.
					Allow a supporting calculation (speed is about 4.2 km s ⁻¹)
			Mercury has a higher escape velocity than Pluto (ORA)	B1	Allow 'required speed' for 'escape velocity' Allow 'fast enough to escape'
		ii i	Mercury is closer to sun and Mercury is hott <u>er</u> (ORA)	M1	Examiner's Comments Candidates found this last item very challenging indeed, with only exceptional candidates gaining two or three marks.
			Molecules on Mercury (are more likely to) have speed higher than the escape	A1	Many candidates suggested that the reason for Mercury's lack of atmosphere was the superior gravitational pull of the Sun, which is wholly incorrect. Others suggested that the solar wind or 'radiation' had burnt off the atmosphere.
			velocity		Rather fewer candidates correctly related Mercury's smaller mean distance to the Sun and its higher temperature or reasoned that Mercury's escape velocity was higher than Pluto's.
					Only a small minority of candidates recognised that even though Mercury has a higher escape velocity, its higher temperature gave the atmosphere's molecules a higher average speed which would have exceeded Mercury's escape velocity.
			Total	6	
			Any THREE from:		
			Atoms of metal vibrate (about fixed points)		Allow particles for atoms / molecules throughout
4 3	а	i		B1×3	Allow idea that water particles move past each other
			Water molecules have translational KE		${f Not}$ idea that the water molecules have more KE than metal atoms
			The motion of the water molecules is random		

Metal atoms and water molecules have the same KE or $\frac{120000}{(J)}$ $(E_{\text{heater}} =) 200 \times$ 10 × 60 C1 C1 or ,... (E_{water} =) 0.5 × ii 4200 × 40 (J) (energy transferred = 120000 - 84000) A1 energy transferred = 3.6 ×10⁴ (J) Level 3 (5–6 marks) Clear description and explanation and correct calculations leading to value of L_f There is a well-developed Indicative scientific points may include: line of reasoning which is clear and logically **Description and explanation** structured. The information presented is relevant and $m \propto t$ (for both) substantiated. Greater gradient for funnel with heater / greater rate of water from funnel with heater Level 2 (3–4 marks) Energy supplied to the ice is at a constant rate (for both beakers) Clear description and Idea that arrangement in Fig 17.2 is a control explanation Beaker in 17.2 heated just by surroundings / air / room or Arrangement in Fig. 17.1 gains energy from heater and surroundings / Correct calculations leading B1×6 b air / room to value of Lf or Some description or Calculation explanation and some correct calculations Gradient(s) calculated • $\Delta m = 45 \times 10^{-3} \text{ kg}$ There is a line of reasoning $\Delta E = mL_{(f)}$ presented with some $\Delta E = 5 \times 12 \times 240 = 14400 \text{ J}$ structure. The information $L_{\rm (f)} = 14400 / 45 \times 10^{-3} = 3.2 \times 10^{5}$ presented is in the most-part • Units: J kg⁻¹ relevant and supported by some evidence. **Note** : $L_{(f)}$ can be calculated using $L_{(f)} = VI \div |\Delta \text{gradient}|$ Level 1 (1–2 marks) Limited description or explanation or Limited calculations

	The information is basic and communicated in an unstructured way. The information is supported by limited evidence and the relationship to the evidence may not be clear. 0 marks No response or no response worthy of credit. Total	12	Indicative scientific points may include:
4 4	 Level 3 (5–6 marks) Clear explanation and correct calculation. There is a well–developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) Some explanation and limited calculation, or limited explanation and correct calculation. There is a line of reasoning presented with some structure. There is a line of reasoning presented with some structure. The information presented is in the most–part relevant and supported by some evidence. Level 1 (1–2 marks) Limited explanation and missing or incomplete calculation. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks 	B1x6	Explanation • At a certain temperature all atoms have the same <u>average</u> kinetic energy • Helium behaves as an ideal gas • $t_{e}^{-\frac{3}{2}t}$ • Mean / r.m.s speed of atoms is less than the escape velocity • Atoms have range of speeds / velocity or mention of Maxwell- Boltzmann distribution • Faster atoms have escaped the Earth (over long period of time) • Earth was significantly hotter in the (ancient) past Calculation • $T = 283 \text{ K}$ • $\frac{1}{2}mc^{-2} = \frac{3}{2}kT$ • $c_{r.m.t} = \sqrt{\frac{3kT}{m}}$ • $c_{r.m.t} = \sqrt{\frac{3kT}{m}}$

No response (NR) or no	
response worthy of credit (0).	
	Examiner's Comments
	Exemplar 6
	$\frac{1}{2}m\bar{c}^{2}=3/2KT$
	72= 3KT = 3+35+0 -2283
	3×1.35×10×283
	66/12/027
	C2 = 17-64487.95
	C = 1328 B4
	E-1330 m5'.
	Particles more around random!
	with random speads Collisions a
	Clastic SO KE is not Last. Most part
	are moving at speeds around 1330 ms
	a little less but given the rand
	action of a stand when all a
	motion of particles, which follow Boltzmann's distribution, a very with
	OF those have speeds > 11Kms'
	Eventually patticks should
	Earth's atmosphere but since heli
	nucleii are just alpha particles
	in preterre radioactice regionions these
	constanty teens being produced. Hence, u
	can still tindemall amounts of
	Fooly on Earth
	In correctly calculating the root means square speed and by being
	clear about how that has been calculated, this candidate has gained
	L2 already. There is a correct comparison of this speed with the
	escape velocity. There is also reference to the Boltzmann distribution
	of speeds, suggesting that even though a small fraction will have a sufficient velocity, over time those particles will escape.
	Most candidates made good progress with the calculation or provided

		Total	6	an alternative by calculating the mean KE of a particle and comparing that with the KE a particle with escape velocity would have. A significant fraction made a poor comparison of their value with escape velocity (e.g. that 1300 ms ⁻¹ was greater than 11 km s ⁻¹) or compared the mean squared speed with the escape velocity.
4 5	i	(energy =) 150 × 7 or 1050 (J) 1050 = 0.025 × c × 20 (c =) 2100 (J kg ⁻¹ K ⁻¹)	C1 C1 A1	Allow any correct re-arrangement
	ii	(energy=) $150 \times (63 - 7)$ or 8400 (J) 8400 = $L_{(f)} \times 0.025$ (L_f =) 3.4×10^5 (J kg ⁻¹)	C1 A1	
	ï	Longer time to heat water (through the same temperature) / shorter time to heat (ice) through same temperature / gradient of graph is greater for ice / gradient of graph is smaller for water/AW Water has greater specific heat capacity	M1 A1	Allow calculation of gradients
		Total	7	
4 6	i	Т = 293 К	M1	
	i	$3/2 kT = \frac{1}{2} mv^2$	C1	
	i	$3/2 \times 1.38 \times 10^{-23} \times 293 = \frac{1}{2}$ $\times 4.7 \times 10^{-26} \times v^2$	M1	
	i	v = 510 (m s ⁻¹)	A0	Note answer is 509.8 m s ⁻¹ to 4 s.f.
	ii	1. Total vertical momentum after = 0 Total vertical momentum before = 0 (momentum is conserved)	B1 B1	
	ii	2. $4.7 \times 10^{-26} \times v \times \sin 88^{\circ} =$ 1.4 × 10 ⁻²⁴ × 23 × sin 45°	C1	
	ii	<i>v</i> = 480 (m s ⁻¹)	A1	Allow other correct methods.
		Total	7	
4 7	i	$(p =) 6.6 \times 10^{-26} \times 990 \text{ or}$ 6.5(3) × 10 ⁻²³ (kg m s ⁻¹)	C1	

	ii	$(\Delta p =) 2 \times 6.6 \times 10^{-26} \times 990$ $\Delta p = 1.3 \times 10^{-22} (\text{kg m s}^{-1})$ $990/[2 \times 0.46] (= 1080)$ $(F = \Delta p/\Delta t)$ $(F =) 1.3 \times 10^{-22} \times 1000$ $F = 1.3 \times 10^{-19} \text{ N}$	A1 B1 C1	Ignore sign of answer Possible ECF from (b)(i)
		$F = 1.3 \times 10^{-19} \text{ N}$	A1	Note 1080 would give 1.4×10^{-19} (N)
	ii i	Use of $p = pressure = f/A$ or (total) force / area Idea of multiplying by total number of atoms	B1 B1	Allow particles or molecules for atoms
		Total	7	
4 8	i	sin or cos wave with 1.5 wavelengths (between C and R) y-axis showing scale, i.e. (amplitude) 2.(0) × 10^{-6} (m) correct scale on x-axis showing $\lambda = 0.2$ (m) X and Y labelled at adjacent intercepts on x-axis	B1 B1 B1 B1	unit must be present, e.g 10^{-6} m NOT if axis labelled time Examiner's Comments Most candidates correctly labelled the scale on the displacement axis of the sinusoidal graph that they drew. The points where the air particles were moving the fastest were also well known. Fewer labelled <i>distance</i> on the x-axis, many incorrectly writing <i>time</i> . Only the better candidates marked the correct scale on this axis and very few indicated that there were 1.5 wavelengths between the points C and R .
	ii	$v = A\omega \text{ or } 2\pi fA$ $v = (2 \times 10^{-6} \times 2 \times 3.14 \times 11.7 \times 10^{3} =)$ $2.1 \times 10^{-2} \text{ (m s}^{-1}.)$ $\frac{1}{2}Mv^{2} = 3/2 \text{ RT and T} = 290$ $2v = \sqrt{(3 \times 8.31 \times 290 / 0.029)}$ $v = 5(.0) \times 10^{2} \text{ (m s}^{-1}.)$	C1 A1 C1 A1	 or ¹/₂mv² = 3/2 kT so v² = 3 (k / m) 290 N.B. remember to record a mark out of 4 here Examiner's Comments Answers were generally well structured into two sections, one for each experiment. A few candidates thought they could measure the wavelength on the oscilloscope screen. In experiment (a) most understood that the phase difference between the two oscillations at the microphone changed as one speaker was moved away. Explanations often muddled <i>path</i> and <i>phase</i>

				difference or referred to <i>nodes</i> and <i>antinodes</i> detected by the microphone. Some candidates misinterpreted the experiment moving the microphone to detect interference fringes, allowing the double slits formula to be used to find the wavelength. Others thought that Doppler shift was applicable. For experiment (b) many candidates used <i>maxima</i> and <i>minima</i> in place of <i>antinodes</i> and <i>nodes</i> although most recognised this to be a <i>standing</i> wave situation. Quite a few candidates ignored the instruction about reducing the uncertainty. The best candidates suggested reducing the frequency to reduce the percentage uncertainty in the wavelength measurement.
		Total	8	
4 9	i	$-mV_g = \frac{1}{2}mv^2 \text{ or } \frac{1}{2}mv^2 + mV_g = 0$	B1	
	i	$V_g = -GM/R = -gR$	B1	
	i	v = √ (2gR)	B1	Working must be shown
	ii	$v = \sqrt{(2 \times 9.81 \times 6.4 \times 10^6)} =$ 11 × 10 ³ m s ⁻¹	B1	allow 11(.2) km s ⁻¹
	ii i	$\frac{1}{2}$ mc ² = 3/2 kT where m = (M/N _A) = 6.6 × 10 ⁻²⁷ kg	B1	ecf (ii); allow m = 4u or 4 × 1.67 × 10 ⁻²⁷
	ii i	$T = 6.6 \times 10^{-27} \times 121 \times 10^{6} / 3 \times 1.38 \times 10^{-23}$	C1	
	ii i	T = 1.9 × 10 ⁴ (K)	A1	allow 2 or 2.0
	i v	1 random motion and elastic collisions of particles	B1	\max 4 out of 5 marking points where answer is a logical progression
	i v	2 lead to distribution of kinetic energies/velocities among particles	B1 B1	
	i v	3 a very few will have very high velocities at top end of distribution 4 a long way from mean /r.m.s. velocity at 300 K 5 hence some able to escape	B1	
	v	helium nucleus is an α- particle	B1	max 2 out of 3 marking points
	v	so helium is generated by radioactive decay helium is found in (natural gas) deposits underground	B1	
		Total	13	